

EDM-M*IOL DIGITAL AMPLIFIER FOR OPEN LOOP PROPORTIONAL VALVES SERIES 31

EDM-M1 single solenoid EDM-M2 double solenoid EDM-M3 two single solenoids independent channels

RAIL MOUNTING TYPE: DIN EN 50022

The EDM-M*IOL card is a digital amplifier for open loop proportional valves control by a PWM stage.

The card supplies the current to the solenoid according to the reference signal and independently of temperature variations or load impedance.

The card is available in versions for the control of a single solenoid valve (M1), a double solenoid valve (M2) and two single solenoid valves (M3) by two independent channels.

Each version is available with different maximum current settings and switching frequencies (PWM), optimized according to the relevant valve.

Card setup by the master IO-Link tool.

TECHNICAL CHARACTERISTICS

Power supply (U _b)	V DC	19 ÷ 30 ripple max 3 V
Required power	W	min 20 - max 60 (see point 5.2)
Max input current	А	4.5
Output current	A	maximum 4.5 (see point 5.2)
Available reference signals	digital	via IO-Link
Digital input		ON > 8 to U_b OFF < 5V (resistance 17 kohm)
Digital output		Low level < 2 V, high level > max U_b (U_b = power supply)
Fuse, external	А	6A, medium time lag
Electromagnetic compatibility (EMC)		according to 2014/30/EU standards
Housing material		ABS
Housing dimensions	mm	23x98x122
Connector		Plug-in terminal block with tightening screws: 15 poles - micro USB
Operating temperature range	°C	-20 / +70
Protection degree		IP20
Mass	kg	0.15

OPERATING PRINCIPLE

1 - IDENTIFICATION CODE

2 - FEATURES

Reference signal and enabling are set via IO-Link. A redundant enable signal can be activated via software on pin 12.

Controller functions

Power amplifier with current controlled by digital input signal for three different applications:

- M1: control of 1 single solenoid proportional valve
- (e.g. throttle, pressure, directional.)
- M2: control of 1 dual solenoid proportional valve
- (e.g. directional)

M3: control of 2 single solenoid proportional valves, via 2 independent channels.

- The current to solenoid is closed loop controlled, so is independent from supply and solenoid resistance.
- Parameters programmable via software: ramps, PWM frequency, offset, gain, dither.

Adaptation of the valve characteristic curve

Deadband compensation

Monitoring functions

- The output stage is monitored for cable breakdown, is short circuit proof and disables the power stage in case of an error
- · Failure monitoring for current analogue inputs

Other characteristics

- Scaling of analogue inputs
- Card configuration via software
- Diagnostic
- Autorestore
- Improved diagnostic available at PLC
- Independent enabling / disabling for each channel in M3 version.

3 - FUNCTIONAL SPECIFICATIONS

3.1 - Power supply

This card is designed for 19 to 30 V DC (24 V DC \pm 10%) power supply voltage, as required from IO-Link standards

All inductivities at the same power supply (relays, valves) must be provided with an over-voltage protection (varistors or freewheeling diodes).

It is recommended to use a regulated power supply (linear or switching mode) for the card supply and for the sensors.

NOTE: The value of the power supply voltage on the card must not be lower than the rated working voltage of the solenoids to be controlled.

For EMC requirements the 0V DC of the power supply must be connected to GND on electrical cabinet.

3.2 - Electrical protections

All inputs and outputs are protected with suppressor diodes and RC-filters against transient overshoots.

3.3 - Digital Input

The digital input must have a voltage from 12 to 24 V;

 $ON > 8 \text{ to } U_{b}$

OFF < 5V. Input resistance 17 kohm.

See block diagrams and wiring for connections.

3.4 - Digital Output PIN 9 - Card OK

This output permits to check the state of the card: when the card works normally, there is the same voltage as for the power supply on this pin, referred to the 0V, pin 2; when there is an anomaly, the control logic forbids the power output to the solenoids and switch this output to zero.

Max current 50 mA.

Low level < 2 V High level > max Ub, where Ub = power supply

3.5 - Output value

The output value is current, maximum range 200 \div 4000 mA, according to the configuration of the card ordered.

All cables which lead outside must be screened.

3.6 - Reference signals

The card EDM-M* IOL accept a digital signal from PLC.

Reference value depends on the card version as stated in diagrams here below.

4 - EDM-M, DUPLOMATIC VALVES AND DEFAULT SETTINGS

EDM-M card is pre-set at factory. The following table shows the default settings of EDM-M standard versions and the current Duplomatic valves to be coupled with. Different settings are available upon request.

Curve adaption parameters (point 8.4) permit to scale the current up to 120% of the nominal CURRENT value set.

Cards are tuned by the manufacturer to optimize the performance in accordance with the reference coil selected. Working conditions far from nominal settings could require advanced tuning. Apply for them at our technical dept.

NOTE about EDM-M3: Combinations shown here below are just few examples of possible matches. All combinations provided in the ordering code are possible.

CARDS FOR 24V SOLENOIDS

CARD				VALVES TO MATCH			
Name	l Min [mA]	I Max [mA]	I Lim [mA]	PWM [Hz]	Name	single coil	double coil
EDM-M101	200	780	1100	100	DSE2	•	
EDM-M102	100	780	1100	200	PLKE08, PZME3, PZME5	•	
EDM-M111	200	860	1125	100	DSPE*, RPCED1, RPCED1-T3, RPCE2, RPCE3, BLS6, ZDE3, QDE3	•	
EDM-M112	200	860	1125	200	DSE3, DSE3B, PRE*, PRE3, PDE3, DZCE*, PZE3	•	
EDM-M131	200	1600	1958	100	DSE5, QDE5	•	
EDM-M201	200	780	1100	100	DSE2		•
EDM-M211	200	860	1125	100	DSPE*, ZDE3, BLS6		•
EDM-M212	200	860	1125	200	DSE3, DSE3B		•
EDM-M231	200	1600	1958	100	DSE5		•
EDM-M31111	200 200	860 860	1125 1125	100 100	DSPE*, RPCED1, RPCED1-T3, RPCE2, RPCE3, BLS6, ZDE3, QDE3	••	
EDM-M31122	200 200	860 860	1125 1125	200 200	DSE3, DSE3B, PRE*, PRE3, PDE3, DZCE*, PZE3	••	
EDM-M33012	200 100	1600 780	1958 100	100 200	VPPM-*PQCE, regulator (DSE5 + PLKE08)		

CARDS FOR 12V SOLENOIDS

	CARD				VALVES TO MATCH		
Name	l Min [mA]	I Max [mA]	I Lim [mA]	PWM [Hz]	Name	single coil	double coil
EDM-M141	300	1880	2250	100	DSPE*, BLS6, QDE3	•	
EDM-M142	300	1880	2250	200	DSE3, DSE3B, CRE, PRE*, PRE3, PDE3, DZCE*, ZDE3, PZE3	•	
EDM-M151	500	2600	3333	100	DSE5, QDE5	•	
EDM-M162	400	1530	1900	200	DSE2	•	
EDM-M163	200	1530	1900	300	PLKE08, PZME3, PZME5	•	
EDM-M241	300	1880	2250	100	DSPE*, BLS6		•
EDM-M242	300	1880	2250	200	DSE3, DSE3B, ZDE3		•
EDM-M251	500	2600	3333	100	DSE5		•
EDM-M262	200	1530	1900	200	DSE2		•
EDM-M34411	300 300	1880 1880	2250 2250	100 100	DSPE*, BLS6, ZDE3, QDE3	••	
EDM-M34422	300 300	1880 1880	2250 2250	200 200	DSE3, DSE3B, PRE*, PRE3, PDE3, DZCE*, PZE3	••	
EDM-M35412	500 300	2600 1880	3333 2250	100 200	DSE5+ DSE3		

5 - INSTALLATION

5.1 - Wires sizing

Suggested cable cross sections for solenoid supply are shown in the table below. However, the sizing has to ensure a voltage to the coil of not less than 90% of its nominal value.

The voltage drop through the card is 0.5 V.

Suggested cable cross sections for solenoid supply [mm²]

Card supply	Coil	Cable length			
voltage	type	< 10 m	10 to 25 m	25 to 50 m	
	780 mA - 24V	0.5	0.5	1	
	860 mA - 24V	0.5	0.5	1	
24V	1600 mA - 24V	0.5	1	2.5	
24 V	1530 mA - 12V	0.5	0.5	0.5	
	1880 mA -12V	0.5	0.5	0.5	
	2600 mA-12V	0.5	0.5	0.5	
	1530 mA -12V	1	2.5	4	
12V	1880 mA -12V	1	2.5	6	
	2600 mA -12V	1.5	4	6	

Power supply cable must be tailored in accordance with the rules above, taking into account the number of coils connected.

- The 15-poles terminal strip accepts connection of a 1.5 mm² conductor with ferrule. Applications that require larger cross sections require mandatorily a junction box.
- We suggest a cross section of 0.25 mm², up to 10-meter length for signal cables.

As a general rule, the valve and the electronic card connection wires must be kept as far as possible from interference sources (e.g. power wires, electric motors, inverters and electrical switches).

Complete protection of the connection wires can be requested in environments with critical electromagnetic interferences.

5.2 - Card power consumption

The power required by the card depends on output current to be supplied (determined by the card version) and on the nominal voltage of the coil to be fed.

A conservative value of the required power can be considered as the product of V x I.

Examples:

- an EDM-M111 card with maximum current 860 mA coupled with a coil with nominal voltage 24V requires 20W power.
- an EDM-M35411 card with maximum current 4500 mA coupled with a coil with nominal voltage 12V requires 54W power.

The maximum power consumption of the card is 60 W.

6 - LED KEY

The card is equipped with LEDs on the front panel. L1 to L4 led are for a fast check of the card operation.

• ALL LEDS BLINKING: low voltage on power supply. This state is also showed when the USB communication is active but the card is not powered.

GREEN led: power

- (ON: card powered, OFF no power supply)
- YELLOW led: functions as in tables below, according to the card version.

EDM-M1					
LED	ON (function ok)				
L1	Reference	signal missing	-	-	
L2	Solenoid	open coil	short circuit	not enabled NOTE 1	
L3	not in use				
L4	Ready	-	-	fault NOTE 2	

	EDM-M2					
LED	ON (function ok)	FLASHING slow	OFF			
L1	Reference	signal missing	-	-		
L2	Solenoid 1		a ha at a basa di	not		
L3	Solenoid 2	open coil	short circuit	enabled NOTE 1		
L4	Ready	-	-	fault NOTE 2		

EDM-M3					
LED	ON (function ok)	FLASHING slow	OFF NOTE 3		
L1	Reference 1	signal missing -		-	
L2	Solenoid 1	open coil	short circuit	not enabled NOTE 1	
L3	Reference 2	signal missing -		-	
L4	Solenoid 2	open coil	short circuit	not enabled NOTE 1	

L5 and L6 led are for the IO-Link communication.

LED	ON	FLASHING
L5	-	device linked to Master
L6	disconnected device	powered device, not connected to Master

NOTE 1: only for EDM-M*-A.

NOTE 2: with the diagnostics in AUTO mode, in the event of a 'open coil' error, the card attempts to reset cyclically so the LED flashes.

NOTE 3: if the channel has been disabled via software, the relative LEDs are disabled also.

7 - DEVICE SETUP

Please note that the USB port is not galvanically isolated.

The latest released version of EBC software can be downloaded from Duplomatic MS website.

The software is compatible with Microsoft OS Windows 7, 8 and 10.

Please refer to 89251 ETM Technical Manual.

Card configuration must occur by the IO-link master, which stores the parameters set in the PLC. In the event of a reset or a card replacement the parameter set will be restored by the PLC. Please refer to the 89251 ETM Technical Manual for stored parameters list.

The setting of parameters not included in the 'stored parameter list' of the IO-Link master is feasible using the EBC software, but this parameterization must be saved and kept separately because in the event of a parameter reset by the master it would be overwritten.

Configurations made by the EBC software are recommended only for special card upgrades (card firmware, etc..) or special needs.

8 - MAIN FEATURES

8.1 - Diagnostics

Diagnostic data that are collectable from the lo-Link Master are: temperature, supply voltage for power stage and for control stage, current to solenoid, working hours powered and working hours for each solenoid.

8.2 - Input signal scaling

Set the coefficients for offset and gain of the input signal.

EDM-M1	EDM-M2	EDM-M3
SIGNAL_OFFSET	SIGNAL_OFFSET	SIGNAL1_OFFSET SIGNAL2_OFFSET
default: 0.00		
SIGNAL_GAIN	SIGNAL_GAIN	SIGNAL1_GAIN SIGNAL2_GAIN
range: 0.4010.00 default: 1.00		

8.3 - Curve adaption

Deadband compensation and current input scaling are customizable. Values in percent.

EDM-M1	EDM-M2	EDM-M3
ADJ_MIN	ADJ_MIN_A	ADJ1_MIN
range: 0 50%	ADJ_MIN_B	ADJ2_MIN
default: according to	the card version	
delault. according to		
ADJ MAX	ADJ_MAX_A	ADJ1_MAX
AD0_MAA	ADJ_MAX_B	ADJ2_MAX
range: ADJ_min 1	20%	
default: 100%		
ADJ TRIGGER	ADJ TRIGGER	ADJ1_TRIGGER
ADJ_TRIGGER	ADJ_TRIGGER	ADJ2_TRIGGER
range: 0 20%		
default: 1.5%		

8.4 - Ramps

Parameters for ramp up and ramp down can be set in milliseconds. A and B tag the quadrants. These values set the amount of time that the command signal will take to follow a step change in the reference signal $0 \div 100$.

EDM-M1	EDM-M2	EDM-M3
RAMP_UP RAMP_DOWN	RAMP_UP_A RAMP_DOWN_A RAMP_UP_B RAMP_DOWN_B	RAMP1_UP RAMP1_DOWN RAMP2_UP RAMP2_DOWN

range: 0 ... 20000 ms default: 0

8.5 - PWM

Pwm frequencies for current output.

EDM-M1	EDM-M2	EDM-M3
PWM	PWM	PWM1 PWM2

range: 70 ... 500 Hz

default: preset value, according to the card version

9 - BLOCK DIAGRAMS

9.1 - EDM - M1

9.2 - EDM-M2

9.3 - EDM-M3

10 - WIRING

11 - OVERALL AND MOUNTING DIMENSIONS

DUPLOMATIC MS Spa

via Mario Re Depaolini, 24 | 20015 Parabiago (MI) | Italy T +39 0331 895111 | E vendite.ita@duplomatic.com | sales.exp@duplomatic.com duplomaticmotionsolutions.com